Assuntos: Derivadas Parciais

Palavras-chaves: derivada, derivadas parciais, diferenciabilidade

Derivadas Parciais (continuação)

Exemplo 1 Determine as derivadas parciais \(\frac{\partial f}{\partial x}(x, y) \) e \(\frac{\partial f}{\partial y}(x, y) \) da função dada

1. \(f(x, y) = \frac{x}{e^{x^2+y^2}} \)

*Em relação a \(x \) temos:

\[
\frac{\partial f}{\partial x}(x, y) = \frac{(x)'e^{x^2+y^2} - x(e^{x^2+y^2})'}{(e^{x^2+y^2})^2} = \frac{1.e^{x^2+y^2} - x.e^{x^2+y^2}.2x}{(e^{x^2+y^2})^2} = \frac{(1 - 2x^2)e^{x^2+y^2}}{(e^{x^2+y^2})^2} = \frac{1 - 2x^2}{e^{x^2+y^2}}
\]

*Em relação a \(y \):

\[
\frac{\partial f}{\partial y}(x, y) = \frac{0}{(e^{x^2+y^2})^2} = \frac{-x.e^{x^2+y^2}.2y}{(e^{x^2+y^2})^2} = \frac{-2xy}{e^{x^2+y^2}}
\]

2. \(f(x, y) = \arctan(xy) \)
Em relação a x:

\[
\frac{\partial f}{\partial x}(x, y) = \frac{1}{1 + (xy)^2} (xy)'
\]

\[= \frac{1}{1 + (xy)^2} y
\]

\[= \frac{y}{1 + (xy)^2}
\]

Em relação a y:

\[
\frac{\partial f}{\partial y}(x, y) = \frac{1}{1 + (xy)^2} (xy)'
\]

\[= \frac{1}{1 + (xy)^2} x
\]

\[= \frac{x}{1 + (xy)^2}
\]

Exemplo 2 Verifique que a função $f(x, y) = x \sin \left(\frac{x}{y} \right)$ satisfaz

\[x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = f
\]

Resolução: Temos que:

\[
\frac{\partial f}{\partial x}(x, y) = \sin \left(\frac{x}{y} \right) + x \cos \left(\frac{x}{y} \right) \cdot \frac{1}{y}
\]

\[= \sin \left(\frac{x}{y} \right) + \frac{x}{y} \cos \left(\frac{x}{y} \right)
\]

Por outro lado:

\[
\frac{\partial f}{\partial y}(x, y) = x \cos \left(\frac{x}{y} \right) \cdot \left(-\frac{x}{y^2} \right) = -\frac{x^2}{y^2} \cos \left(\frac{x}{y} \right)
\]

Assim, teremos:

\[
x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = x \left(\sin \left(\frac{x}{y} \right) + \frac{x}{y} \cos \left(\frac{x}{y} \right) \right) + y \left(-\frac{x^2}{y^2} \cos \left(\frac{x}{y} \right) \right)
\]

\[= x \sin \left(\frac{x}{y} \right) + \frac{x^2}{y} \cos \left(\frac{x}{y} \right) = x \sin \left(\frac{x}{y} \right) = f(x, y)
\]

Portanto:
A expressão $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = f$ é um exemplo de equação diferencial parcial.

Exemplo 3 Encontre a função $f(x, y)$ que satisfaça:

\[
\begin{align*}
\frac{\partial f}{\partial x} &= 2xy^3 - \frac{1}{\sqrt{x}} \\
\frac{\partial f}{\partial y} &= 3x^2y^2 - 10y \\
f(4, 2) &= 5.
\end{align*}
\]

Resolução: Se $\frac{\partial f}{\partial x} = 2xy^3 - \frac{1}{\sqrt{x}}$, então:

\[
f(x, y) = \int \left(2xy^3 - \frac{1}{\sqrt{x}}\right) dx = x^2y^3 - 2\sqrt{x} + \varphi(y)
\]

em que $\varphi(y)$ é uma função apenas da variável y. Portanto:

\[
\frac{\partial f}{\partial y} = 3x^2y^2 + \varphi'(y)
\]

Mas, já temos que $\frac{\partial f}{\partial y} = 3x^2y^2 - 10y$, logo:

\[
3x^2y^2 - 10y = 3x^2y^2 + \varphi'(y) \\
\varphi'(y) = -10y \Rightarrow \\
\varphi(y) = -5y^2 + k
\]

onde k é uma constante. Portanto

\[
f(x, y) = x^2y^3 - 2\sqrt{x} - 5y^2 + k
\]

Como $f(4, 2) = 5$, segue que:

\[
f(4, 2) = 4^2 - 2\sqrt{4} - 5.2^2 + k \Rightarrow \\
5 = 128 - 4 - 20 + k \Rightarrow \\
5 = 104 + k \Rightarrow \\
k = -99
\]
Portanto, \(f(x, y) = x^2y^3 - 2\sqrt{x} - 5y^2 - 99 \).

Sejam \(f(x, y) \) uma função e \(p_0 = (x_0, y_0) \) um ponto interior de \(D_f \), isto é, um ponto para o qual existe uma bola aberta \(B_r(p_0) \) contida em \(D_f \).

Logo existe um intervalo aberto \(I \) tal que os pontos da forma \((x, y_0)\), com \(x \in D_f \), estão em \(D_f \).

Consideremos a função \(g(x) \), de uma variável, dada por:

\[g(x) = f(x, y_0) \quad \text{com} \quad x \in I \]

Sabemos que \(\frac{\partial f}{\partial x}(x_0, y_0) = g'(x) \). Portanto

\[\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} \]

Logo,

\[\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0} \]

Fazendo a seguinte mudança de variável nesse limite, teremos:

\[
\begin{cases}
 h = x - x_0 \\
 x \to x_0 \Rightarrow h \to 0
\end{cases}
\]

obtemos.
\[
\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}
\]

Essas são as duas fórmulas para o cálculo da derivada parcial de \(f(x, y)\) em relação a \(x\). Procedendo de maneira análoga, temos que as fórmulas para o cálculo da derivada parcial de \(f(x, y)\), em relação a \(y\), são dadas por:

\[
\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0} = \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k}
\]

Há casos em que, para cálculo das derivadas parciais de \(f(x, y)\) em relação em um ponto \((x_0, y_0)\), temos que usas essas fórmulas.

Exemplo 4 Calcule as derivadas parciais de \(f(x, y) = \sqrt{x^2 + y^2}\) em \((x, y) \neq (0, 0)\) e em \((0, 0)\)

Resolução: Para \((x, y) \neq (0, 0)\), temos:

\[
\frac{\partial f}{\partial x}(x, y) = \frac{1}{2\sqrt{x^2 + y^2}} \cdot 2x = \frac{x}{\sqrt{x^2 + y^2}},
\]
\[
\frac{\partial f}{\partial y}(x, y) = \frac{1}{2\sqrt{x^2 + y^2}} \cdot 2y = \frac{y}{\sqrt{x^2 + y^2}}.
\]

Observamos que não podemos usar essas expressões de \(\frac{\partial f}{\partial x}\) e \(\frac{\partial f}{\partial y}\) para calcularmos \(\frac{\partial f}{\partial x}(0, 0)\) e \(\frac{\partial f}{\partial y}(0, 0)\). Assim, para estas, devemos utilizar as fórmulas anteriores.

\[
\frac{\partial f}{\partial x}(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt{x^2}}{x} = \lim_{x \to 0} \frac{|x|}{x},
\]

Esse limite não existe. Portanto, não existe \(\frac{\partial f}{\partial x}(0, 0)\). Temos também que:

\[
\frac{\partial f}{\partial y}(0, 0) = \lim_{y \to 0} \frac{f(0, y) - f(0, 0)}{y - 0} = \lim_{y \to 0} \frac{\sqrt{y^2}}{y} = \lim_{y \to 0} \frac{|y|}{y}.
\]

Logo, \(\frac{\partial f}{\partial y}(0, 0)\) também não existe.

Concluímos que a função \(f(x, y) = \sqrt{x^2 + y^2}\) não possui derivadas parciais em \((0, 0)\).

\[
\frac{\partial f}{\partial x}(x, y) = \begin{cases}
\frac{x}{\sqrt{x^2 + y^2}} & \text{se } (x, y) \neq (0, 0) \\
\text{não existe se } (x, y) = (0, 0)
\end{cases}
\]
\[
\frac{\partial f}{\partial y}(x, y) = \begin{cases}
\frac{y}{\sqrt{x^2 + y^2}} & \text{se } (x, y) \neq (0, 0) \\
\text{não existe se } (x, y) = (0, 0)
\end{cases}
\]
Observamos que \((0,0)\) é um ponto interior de \(D_f\) e que \(f(x,y)\) é contínua em \((0,0)\). Isso mostra que a continuidade de uma função \(f(x,y)\) em um ponto \((x_0,y_0)\) não implica na existência das derivadas parciais de \(f(x,y)\) nesse ponto.

\[
f \text{é contínua em } (x_0,y_0) \not\Rightarrow \text{existem } \frac{\partial f}{\partial x}(x_0,y_0) \text{ e } \frac{\partial f}{\partial y}(x_0,y_0)
\]

Exemplo 5 Calcule as derivadas parciais da função

\[
f(x,y) = \begin{cases}
\frac{x^3 - y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\
0 & \text{se } (x,y) = (0,0)
\end{cases}
\]

Resolução: Seja \((x,y) \neq (0,0).\) Então:

\[
\frac{\partial f}{\partial x}(x,y) = \frac{3x^2(x^2+y^2) - (x^3-y^2)2x}{(x^2+y^2)^2} = \frac{3x^4 + 3x^2y^2 - 2x^3 + 2xy^2}{(x^2+y^2)^2}
\]

\[
= \frac{x^4 + 3x^2y^2 + 2xy^2}{(x^2+y^2)^2}
\]

Vamos agora calcular \(\frac{\partial f}{\partial x}(0,0):\)

\[
\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x-0} = \lim_{x \to 0} \frac{x^3 - 0}{x} = \lim_{x \to 0} \frac{x}{x} = 1
\]

Portanto,

\[
\frac{\partial f}{\partial x}(x,y) = \begin{cases}
\frac{x^4 + 3x^2y^2 + 2xy^2}{(x^2+y^2)^2} & \text{se } (x,y) \neq (0,0) \\
1 & \text{se } (x,y) = (0,0)
\end{cases}
\]

Calculemos \(\frac{\partial f}{\partial y}(x,y), \text{ para } (x,y) \neq (0,0):\)

\[
\frac{\partial f}{\partial y}(x,y) = \frac{-2y(x^2+y^2) - (x^3-y^2)2y}{(x^2+y^2)^2} = \frac{-2x^2y - 2y^3 - 2x^3y + 2y^5}{(x^2+y^2)^2}
\]

\[
= \frac{-2x^2y(1+x)}{(x^2+y^2)^2}
\]

Agora calculamos \(\frac{\partial f}{\partial y}(0,0):\)

\[
\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{0^3 - 0}{0^2+y^2} = \lim_{y \to 0} \frac{0 - 1}{y} = -1
\]
Esse limite não existe. Logo não existe \(\frac{\partial f}{\partial y}(0,0) \). Portanto:
\[
\frac{\partial f}{\partial y}(x,y) = \begin{cases}
-\frac{2x^2y(1+x)}{(x^2+y^2)^2} & \text{se } (x,y) \neq (0,0) \\
\text{não existe} & \text{se } (x,y) = (0,0)
\end{cases}
\]

Derivadas Parciais de funções de três ou mais variáveis

Seja \(f(x,y,z) \) uma função de três variáveis reais a valores reais e \((x_0,y_0,z_0)\) um ponto interior de \(D_f \). Consideremos a função \(g(x) = f(x,y_0,z_0) \). A derivada da função \(g \) em \(x_0 \) é a derivada parcial de \(f \), em relação a \(x \), em \((x_0,y_0,z_0)\) e é indicada por \(\frac{\partial f}{\partial x}(x_0,y_0,z_0) \). Portanto,
\[
\frac{\partial f}{\partial x}(x_0,y_0,z_0) = g'(x_0)
\]

Logo,
\[
\frac{\partial f}{\partial x}(x_0,y_0,z_0) = \lim_{x \to x_0} \frac{f(x,y_0,z_0) - f(x_0,y_0,z_0)}{x-x_0} = \lim_{h \to 0} \frac{f(x_0+h,y_0,z_0) - f(x_0,y_0,z_0)}{h}
\]

Analogamente definimos as derivadas parciais de \(f \), em relação a \(y \) e em relação a \(z \)
\[
\frac{\partial f}{\partial y}(x_0,y_0,z_0) = \lim_{y \to y_0} \frac{f(x_0,y,z_0) - f(x_0,y_0,z_0)}{y-y_0}
\]
\[
\frac{\partial f}{\partial z}(x_0,y_0,z_0) = \lim_{z \to z_0} \frac{f(x_0,y_0,z) - f(x_0,y_0,z_0)}{z-z_0}
\]

De maneira análoga definimos derivadas de funções com mais de três variáveis

Exemplo 6
Cálculo das derivadas parciais da função dada

1. \(f(x,y,z) = x^4 y^2 z - xz^3 + y^2 z - 3z \)

Teremos então que:
\[
\frac{\partial f}{\partial x}(x,y,z) = 4x^3 y^2 z - z^3
\]
\[
\frac{\partial f}{\partial y}(x,y,z) = 2x^4 y z + 2yz
\]
\[
\frac{\partial f}{\partial z}(x,y,z) = x^4 y^2 - 3xz^2 + y^2 - 3
\]

2. \(f(x,y,z,w) = x^2 \ln(y^2 + z^4 + w^6) \)

Teremos que:
\[\frac{\partial f}{\partial x}(x, y, z, w) = 2x \ln(y^2 + z^4 + w^6) \]

\[\frac{\partial f}{\partial y}(x, y, z, w) = \frac{2x^2y}{y^2 + z^4 + w^6} \]

\[\frac{\partial f}{\partial z}(x, y, z, w) = \frac{4x^2z^3}{y^2 + z^4 + w^6} \]

\[\frac{\partial f}{\partial w}(x, y, z, w) = \frac{6x^2w^5}{y^2 + z^4 + w^6} \]